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NATIONAL  ADVISORY COMMITTEE FOR AERONAUTICS 

ADVANCE RESTRICTED REPORT 

COMPARISONS OP METHODS OP  COMPUTING  BENDING 

MOMENTS   IN HELICOPTER ROTOR   BLADES  IN THE 

PLANE OP FLAPPING. 

By John E.  Duberg and Arthur R. Luecker 

SUMMARY 

Several methods of computing bending moments In 
helicopter rotor blades in the plane of flapping are 
reviewed, and the results of a numerical example analyzed 
by four different methods are compared.  The effect on 
computed bending moments of the tip-loss correction 
Introduced by Wheatley is also considered. 

The compsrison indicates that, from the standpoint 
of accuracy of results and esse of application, the 
method proposed by Cierva is the most suitable for routine 
analyses. The tip-loss correction Is shown to have a 
substantial effect on computed bending moments. 

INTRODUCTION 

The determination of the bending stresses in rotor 
blades during flight Is one of the Important problems In 
the stress analysis of the structure of the helicopter. 
The problem is complicated by the fact that the air loads 
and the inertia loads are continuously changing as the 
blades rotate and that the bending deflection of the 
blades has an important effect on the moments developed 
therein. The analysis can be simplified if the blades 
are assumed rigid and therefore unable to bend, but under 
this' assumption the computed bending stresses superimposed 
on the centrifugal-tension stresses are relatively high. 
A more exact analysis, in which the relieving effects of 
centrifugal tension on blade bending are included, gives 
much lower values for these calculated bending stresses. 

In the present paper comparisons are made between 
the various methods that hsve been proposed for the 
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calculation of the bending stresses in the plane of 
flepping. The effect of introducing a correction for 
tip loss, which has heretofore been ignored in stress 
analyses, is also considered.  A numerical example is 
analyzed by each of the several methods to provide a 
concrete basis for the comparisons. 

THEORY AND BASIC ASSUMPTIONS OP METHODS OP ANALYSIS 

The basic rotor theory on which stress analyses of 
rotor blades are based is that of Glauert, Lock, and 
'Theatley.  (See references 1, 2, and 3» respectively.) 
A consideration of the forces acting on the rotor blade 
during steady forward flight, as given by this theory, 
indicates that the total bending moment at any radial 
station may be resolved into the following three components: 

(1) A component that is identical with the bending 
moment in a rigid blade and is therefore 
independent of blade bending 

(2) A component, due to axial tension, that depends 
on the blade deflection and therefore varies 
as the blade bends 

(3) A component due to the inertia forces associated 
with the variation of the deflection with time 

In the simplified theories, in viiich the blade is assumed 
static and rigid, the second and third components do not 
occur, '-Wien flexibility is taken into account so that 
the second component is included, the problem is compli- 
cated because of the interaction between the moments and 
the blade deflections.  If the third component is included, 
the problem is further complicated because the elastic 
curve must satisfy dynamic as well as static conditions. 

METHODS OP ANALYSIS 

The methods of analysis for rotor-blade bending 
moments in the-plane of flapping that are available in 
the literature fall into three categories as follows: 

(1) "Exact" analyses in which inertia forces due' to 
rate of change of blade deflections, as well 
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as the interaction between blade deflections 
and moments, are considered 

(2) Analyses, based on'static loadings, that include 
interaction between blade bending and moments 
but neglect inertia forces due to blade- 
bending deflections 

(3) Simplified analyses in which the bending moments 
for the rigid blade are computed and approxi- 
mate corrections to account for the reduction 
in the bending moment due to the axial load 
are applied; the reduction due to the axial 
load has sometimes been called centrifugal 
relief 

The analysis given in reference i\. is believed to be 
the only published exact analysis and is based on the 
rotor theory of references 1, 2, and 5« This theory has 
been refined and extended in roference 3« In appendix A 
of the present pe-oer, one of these refinements - allowance 
for the reduction in lift near the blade tip - is intro- 
duced into the analysis of blade bending. 

Most of the solutions that have been presented in the 
literature fall into the second category, in which the 
problem treated is purely a static one.  This approach 
reduces the problem to that of a beam under combined 
bending and tension and, therefore, the methods developed 
for such problems can be applied to the analysis of rotor- 
blade moments.  In reference 6, a solution of this class, 
which makes use of "type" solutions to facilitate the 
numerical calculations, is given as a simplification of 
the analysis of reference Ij.. Two other methods of solving 
the static problem are given in references 7 and 8.  In 
reference 7 tne solution is effected by means of the theo- 
rem of three moments generalized to include the effect of 
centrifugal tension.  In reforenco 8 the solution is 
obtained by finding a deflected shape for the blade that 
is consistent with a minimum of potential energy for the 
system. 

The methods of the third category, which should have 
more appeal for use in practical applications, provide 
simplified formulas for obtaining the bending moments in 
the blade by correcting the rigid-blade bending moments 
for the relief caused by centrifugal tension.  Cierva has 
proposed a formula, given in reference 6, which states 
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that the moment developed in the actual rotor blade is 
equal to the product of the rigid-blade bending moment 
and the perfectly flexible blade bending moment divided 
by the sum of these two moments. The perfectly flexible 
blade bending moment is a fictitious bending moment 
obtained by multiplying the stiffness of the actual blade 
by the curvature of the perfectly flexible blade. The 
solutions for the rigid-blade bending moment and the 
flexible-blade bending moment are given in appendix B. 
Hohenemser in reference 9 has developed a method of com- 
puting the blade bending moment by multiplying the rigid- 
blade moment by a correction factor, given herein in 
appendix B, that depends on the blade radius, blade 
stiffness, and centrifugal force at the root. The formula 
is developed on the basis of uniform distribution along 
the length of the blade of both the blade mass and blade 
bending stiffness. Reference 10 contains a brief discus- 
sion of Hohenemser!s formula as well as the development 
of formulas for the calculation of the rigid-blade bending 
moments. 

Although wind-tunnel and flight tests have proved 
the basic rotor theory reliable when applied to the rotor 
as a «hole, the theory contains approximations that raise 
some doubts as to the order of accuracy in computing air 
forces at particular points in the rotor disk and, hence, 
doubts as to the accuracy of bending moments computed by 
any of the methods mentioned herein. These doubts can be 
removed only by further tests in which blade bending is 
measured under operating conditions. 

COMPARISON OP BENDING MOMENTS COMPUTED BY 

DIFFERENT METHODS 

In order to compare the bending moments obtained by 
the several methods of analysis, calculations were made 
for a rotor with three blades, each having the following 
physical properties: 

Radius, foet 12.5 
Mass, slug per foot O.0519 

Blade chord, inches 9j 
Bending stiffness, El, pound-feet2 76I4.O 
Pitch setting (untwisted), degrees   10 
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The rotor was assumed to be rotating at 370 rpm and to 
have a forward velocity of 100 miles per hour, which 
corresponds to a tip-speed ratio p. of 0.30. The ratio \ 
of axial velocity to tip speed was assumed to be -0.079» 
the negative sign Indicates flow downward through the 
rotor disk. 

The bending moments In the plane of flapping have 
been computed for the rotor blade described In the 
preceding paragraph by methods In each of the three 
oatagorles of analysis mentioned In the preceding section. 
The moments computed for four azimuth angles (\|/) are pre- 
sented In figure 1.  Inspection of these moment diagrams 
reveals that only a very small difference in computed 
bending moment at any station exists between the values 
given by the exact method and this exact method modified 
by neglecting the inertia forces due to blade bending. 
The small magnitude of this difference substantiates the 
assumption, common to all approximate methods of analysis, 
that these inertia forces are negligible. 

The method of analysis proposed by Gierva, which is 
given in detail In appendix B, gives a maximum bending 
moment for any azimuth angle that differs only slightly 
from the maximum bending moment given by the exact method 
for the same azimuth angle. The moment diagrams given by 
the Cierva method are In close agreement with the moment 
diagrams for the exact method except for the outer third 
of the blade.  In the outer third of the blade the bending 
moments predicted by the Cierva formula decrease to zero 
less rapidly than those predicted by the exact method, but 
this fact is of little consequence because in this part 
of the blade the moments are less than the maximum moment. 

The method of analysis proposed by Hohenemser gives, 
as shown in figure 1, a bending moment diagram at each 
azimuth angle that differs appreciably from those given 
by the other methods. The computed moment is higher in 
the inner part of the blade and lower in the outer part 
as compared with the moment computed by the exact method. 
At an azimuth angle \|/ of 90°» where the maximum bending 
moment approaches its smallest value, the Hohenemser 
method gives a maximum bending moment appreciably higher 
than that given by the exact method. At \|r s 270°, where 
the maximum bending moment approaches Its largest value, 
the Hohenemser method gives a maximum bending moment 
appreciably smaller than that given by the exact method. 
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The labor required to evaluate the bending stress 
by the approximate methods of Clerva and Hohenemser Is 
only a small fraction of the labor required by the more 
exact methods. Of these two approximate methods, that of 
Clerva Is recommended for practical stress analysis of 
helicopter blades because the bending stresses obtained 
thereby are In good agreement with those given by the exact 
method. 

In figure 2 are shown the results obtained by the 
exact analysis extended to include the effect of tip loss 
by the method introduced by Wheatley (reference 3)« The 
tip-loss factor was assumed to be 0.97* which means that 
the outer 3 percent of the blade is assumed to produce 
no lift. The method of analysis used assumes zero moment 
at the 0.97 point and does not consider bending between 
this point and the tip. At all azimuth angles, the 
consideration of tip loss reduces the maximum bending 
moment considerably and causes a reversal of bending near 
the tip.  Because the assumption made concerning tip 
effect is only a crude approximation of the actual lift 
distribution in this region, the calculated moments near 
the tip may be very much in error. The large reduction 
in the bending moment near the center, however, is 
significant. 

The bending stresses at each station in the rotor 
blades of a helicopter vary between a maximum and a 
minimum with each revolution of the rotor. For the par- 
ticular blade analyzed, which was assumed to be of all- 
metal aluminum-alloy construction with a section modulus 
of O.167 inch cubed and an effective cross-sectional area 
of O.56 square inch, the total stress, which includes the 
centrifugal tension and the superposed bending stress, 
varied between the limits shown in figure 3 for the upper 
and lower fibers at the different stations along the 
blade. Figure 3 is based on the results of the exact 
bending-moment analysis, neglecting tip loss. 

CONCLUSIONS 

A comparison was made of rotor blade bending-moments 
obtained by several methods of analysis. The results for 
the single numerical example studied indicate that the 
additional accuracy obtainable by the"exact"analysis, when 
compared with the best of the approximate methods now in 

1 
••• • 
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use, does not justify the extra labor involved in applying 
the exact method. 

Of the two approximate methods studied, that of Cierva 
gives the best over-all agreement with the more exact 
analysis and is well suited for the determination of 
stresses in blades. The method proposed by Hohenemser, 
although easier to apply than the Cierva method, is less 
desirable because it gives maximum bending moments that 
may differ by as much as one-quarter from those computed 
by the exact method. 

Consideration of tip loss results in a substantial 
reduotion in maximum bending moments and should receive 
further attention in future studies of methods of blade 
stress analysis. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va., Jui 
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APPENDIX A 

EXACT METHOD OP CALCULATING ROTOR-BLADE BENDING MOMENTS 

Differential Equation of Blade Bending 

The basic assumptions of the blade-bending analysis 
referred to herein as the exact method are identical with 
those used in reference 1±  for the development of the dif- 
ferential equation except that a correction is added to 
include the effect of tip loss. The correction for tip 
loss follows the method developed by Wheatley in refer- 
ence 3 in which the air load on the outer few percent of 
the blade is neglected. 

Figure l\.  shows the coordinate system used and the 
nomenclature involved in defining the deviation of the 
flexible blade from the rigid blade. The symbols used in 
the analysis are defined in appendix C.  In figure 5 are 

shown the forces and moments acting on each blade element. 
A consideration of the equilibrium of the element in the 
direction parallel to the longitudinal axis of the blade 
and in the direction normal to the blade yields the 
following differential equation for the blade bending 
deflections: 

- 4+ -¥l - 4^1+ ***%+ H 4=# f <AI> \        rn^R2 / dx2        •  . dx      fi2 dt2 El    dr 

If the blade mass is uniformly distributed from hinge to 
tip, the mass of the tip section, which is assumed to be 
without air load, is 

Q = mR(l - B) 

and the distance from the tip mass to the hinge is 

RQ = |(1 + B) 

If these relationships are substituted in the second term 
of the differential equation some simplification results 
and the differential equation becomes 

dx4        \SF /dx2 dx      ß2 at2        El    dr 
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If the tip loss is neglected, B reduces to unity 
and the -differential equatlpn reduces to that given in 
reference I4.. .-..._. 

Blade Loading 

The term on the right-hand side of equation (Al) 
represents the blade load gradient, which is assumed 
to be the same as that on a rigid blade. The blade 
loading can be evaluated by means of the rotor theory 
given in references 1 and 3.  In the present analysis the 
blades are assumed to be built with constant chord and 
without twiet and the effect of periodic twist of the 
blades is neglocted. The effect of both types of twist 
can be considered by the methods of references 2 and 3« 

If the instantaneous flapping angle of the blades is 
represented by the equation 

P = a0 -  a^ cos  M/ - bj  sin \|/ (A2) 

the velocity components causing aerodynamic forces on 
the blades are 

\ 
U>r = xBRfi + [iB£l sin ty 

Dp  = \Rß - xBRßCa!  sin \lr -  bj  cos $) ^U3) 

~nR0(ao -  &i ccs \|/ -  b^  sin v)cos \|/ 

J 
The load gradient is then piven by 

~ = -cpa(uipUp  + 8Dip2)   - mBR^aoX - mg (AL|.) 

Introduction of the relationships given in equa»- 
tione (A3) into equation (Al+), expanding, and neglecting 
higher harmonics gives for the load gradient 
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dS 
dr = rcpaR

2»)2 6B2x2 + BA . ^X   l 2 _ _2mg_l 
L        \   opafl/   2 »*   opaR2^2] 

-aiB2^2 + 29^Bx + ji\ + jV-2&i \  sln * 

fb!B2x2 - aotiBx + jj<.2*>l] coa *f (A5) 

Flapping Coefficients 

The flapping coefficients a0f  aj, and bj_, which 
define the blade motion given In equation (A2), are deter- 
mined from the condition that the moment at the flapping 
hinge is zero for all azimuth angles.  The coefficients 
are: 

aQ  = Y [&*{* + *)+&]--£- 
\ 

= kv.(kBQ + 3M 

" 3(2& - n2) 

b! = 
8tiBaQ 

3(2332  + n2) 

where 

Mv/ = g(QBR + im^R2^ 

i! = Q3RRQ + inB3R3 

Y    = 
cpaRi+ - ££ 

/ 

(A6) 
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Solution of the Differential Equation of Blade Bending 

The method of solution of the"differential- equation, . 
follows that given in reference ij.. The blade deflections 
are assumed to be expressible in the form 

y = yx + y2 sin >|/ + y^ cos *        (A7) 

in which y^f j^*   and lx  are functions of the distance 
along the bisde span.  Substitution of equation (A7) and 
(A5) in the diffsrential equation (A3) yields the following 
differential equations for the functions yi, y2, and yj. 

- K 
_\   mB2R2/ 

d2 yi 
d*2 dx     2EI   I 

dVS 

dx' 
- K 

m 

(.A'JjAl)] 

(A8) 

2T2 

+ 29nBx + (A9) 

d*2 dx    '     2EI 
biB2!2 

- a0nBx + (AID) 

The four boundary conditions that the functions yi, y2, 
and yj must satisfy are :  At the hinge the deflection 
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and moment are zero, and at radius BR the moment is zero 
and the shear is that required to maintain equilibrium of 
the tip mass Q. The last-mentioned boundary condition, 
at x = 1.0,  can be expressed in the following form: 

On  _ *1 +      m^ 
dx3   cx      °  RQA2 

d'72  dy2 
A~T- = -ST " y2 

A— <*• -   ---- - 

dx^ 
73 

where 

A = 
El 

QQS^RSR 

The differential equations for yi, y2, and y* can 
be solved approximately by the method of "collocation". 
(See reference h,..}  The method of collocation consists 
essentially of expressing the solution as a linear com- 
bination of functions that satisfies the boundary condi- 
tions independently of the value of the coefficient 
associated with each function. The combination of 
functions is substituted into the differential equation, 
and the coefficients are so adjusted that the resultant 
expression satisfies the differential equation at as 
many points as there are functions. 

When the tip effect is considered the following 
set of functions can be used: 

/ 

cP+2 . 
p + 3" 

+ /_  Clp I xP+2 - P_LicP+3 
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72 
%• 

°2P ^P+2 • 
- P H 

P   H 

h   1 

• 3' 

y3 -t 
P=l 

c3p^
+2 • P   H 

P   H 

i- l 

»• 3 

If the tip effect is neglected, the form of the 
solution for y^ Is 

^ n,_fxP+l -  2p xP+2 +  £ 
P=2    v    P+2     (P 

71 = 0ux + £__  Clplx^ —x"~ + P(? + 1) _ ^ 
+ 2)(p +3)  / 

The form of solution for j^    and y? remains as 
before. 5 

Numerical Example 

A numerical example is presented with tip loss 
neglected, for a blade with the following properties 
and operating conditions: 

R = 12.5 feet 

c = 9r inches 2 
m = 0.0519 slug per foot 

a = 5.73 

El = 76I1O pound-feet2 

fi = 38*8 radians per  second 

n = 0.300 

\ = -0,079 

6 = 10° = O.175 radian 

p = 0.00230 slug per cubic foot 
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If the tip loss is neglected, 

3 = 1.0 and Q,  = 0 

Equations (A6) give the following values for the 
flapping coefficients: 

aQ = 0.077922 

ax = O.O96963 

bx = 0.029827 

The factors Y and K have the following values: 

y = 7.5385 

K  = 12^.83 

If six functions are chosen for the solution to the 
differential equation for y^,  the form of the equation is 

n = onx • o12(xJ - Jt. • ±J) + o15 (* . |*5 + |x6) 

+ 0^ - |*S + 12,7) + 0l5 (,« - Mx7 + £B) 

+ OlÄp  " f*8  + If?) (AH) 

When this function is substituted in the differential 
equation (A8), the equation is satisfied at the points 
x = 0, 0.2, O.k.,  0.6, 0.8, and 1.0 if 

Clx = -O.171 foot        C"i2|. = -O.919 foot 
c12 = °'133 foot C15 = O.569 foot 

C^ = 1.197 feet CiZ =  0.503 foot 
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Substitution of the coefficients in equation (All) 
yields 

y1 = -O.17IX + 0.153x3 + 1.061+x^ - 2.315x5 + 2.273x
6 

-o.7lj.8x7 -0.Ulj.9x8 + 0.293x9 

The corresponding bending moments are obtained by 
differentiating twice and multiplying by =±f which gives 

R2 

Mi = ij.0.9(o.795x + 12.77X2 - ii.6.30x3 + 68.i8xU- 

-31.Ij.0x5 - 25.17x6 + 21.12x7) 

By a similar process the results for M2 and Mz corre- 
sponding to the deflections y2 and yz are 

M2 = U8.9(5.i6x - k2.I9x2 + 136.1x3 - 239.9x^ 

+ 232.3*5 - 109.2x6 + 17.8x7) 

M5 = lj.8.9(o.333x + 1.32x2 - 5.o8x3 + 5.93^ 

+ 1.59x5 - 9.18X6 + 5.09x7/ 

The general expression for the bending moments is 

M = Mi + M? sin \|/ + Mj cos \J/ 

At a distance from the flapping hinge of x = 0.6 the 
bending moment is 

M = I4.3.2 - 15.9 sin \|/ + 9.0 cos \|/ 
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The minimum bending moment at the station x = 0.6 
occurs when \|/ = 120° and is 

M = I4.3.2 - 13.8 - I4..5 = 2I4.-9 pound-feet 

The maximum bending moment at the station x = 0.6 
occurs when \|/ = 300° and is 

M = U-3.2 + 13.8 + I4-.5 = 6l.5 pound-feet 
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APPENDIX B 

APPROXIMATE METHODS OF CALCULATING ROTOR- 

BLADE BENDING- MOMENTS 

Cierva Method 

The Cierva formula for the bending moment in a 
rotor blade, given in reference 6, is 

M = 
MrMf 

Mr + Mf 
(Bl) 

where Mr is the moment in a rigid blade and Mf is a 
fictitious moment obtained by multiplying the curvature 
of a perfectly flexible blade by the actual blade bending 
stiffness El. 

If the blade is assumed rigid and tip loss is 
neglected, the rigid-blade bending moment obtained by 
integrating the moment of the load gradient given in 
equation (A5) is 

Mr = fcpaR^j ecx +(x - ^Bx+^2 - -^)AXJ 

[- 
UlCx - p.a0Bx + ^V^Ax    cos   * 

+   1-axC* + 2Q[LBX + (pA + ~^)Ax sin \|/ 

(B2) 

in which 
il     M 

~> 

(B3) 

s 
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If the blade loading for the perfectly flexible 
blade is assumed equal to that of the rigid blade the 
fictitious moment existing in the blade is 

M< = EIx 

9R 
( e - 

e + 5e„2 . _i§S_ 
2   YRfl

2 

(i + x)2 

-*1 + ?*1H2 + 3\i\ 

-a7 - 

bl*f 

(1 + x)2 

bi|x2 

sin ty 

(1 + x)2 
cos \|/ (BU.) 

The numerical values of Mf and Mr can then be 
combined to give the actual blade bending moment according 
to equation (Bl). 

In reference 9 Hohenemser developed the following 
formula for the moment in a blade that has a uniform 
distribution of both blade mass and blade bending 
stiffness: 

11 = -• 
MT 

1   +   O.O52- 
R2P0 

El 

PQ = |mR2fl2 

Substitution of the value for P0 
reduces this equation to 

(B5) 

in which Mr is the rigid-blade bending moment and p0 
is the centrifugal tension at the flapping hinge. 

For a blade of uniform mass distribution, 

in equation (B5) 

M = 
1 + 0.052R 
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In which 
• -   = mR

1^ .       

2EI 

Numerical Examples 

The bending moments in the same blade and for the 
same operating conditions as were considered in appendix A 
are calculated by both Cierva's and Hohenemser's method 
for x = 0.6 and \J/ = 120© and 300°. 

When the basic data from appendix A are substituted 
In equation (B2) the following result is obtained: 

Mp = 192,000 f(0.1750Cx  - O.lli-lOBx + 0.00651AX) 

-   (0.0970CX - 0.1050^ + 0.0215AX)   sin >|/ 

+   (0.0298cx - 0.023IJ.3X + 0.00067Ax)   cos \J        (B6) 

For x = 0.6,  equations (BJ) give 

Ax = 0.0800 

Bx = 0.0693 

cx = 0.0608 

Substitution of- these values of Ax, B*, and Cx in 
equation (B6) gives the following expression for the 
rigid-blade moment at x = 0.6: 

Hip = 265  - 65  sin \|/ + I4.8 cos \|/ 

The perfectly flexible blade bending moment Is 
obtained from equation (Blj.) and Is 

Mf = 512 ffo.1750  - -^%1   + [-0.0970  + ^^Jsin  t 
[L u + *)2J   L (i+ *)2J 

+ Jo.0298 -  °'°?l8
2]°°° *} 
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At x = 0.6, 

Mf = 50.7 - 17.4 sin ty + 8.9 cos ty 

At -ty  = 120° (the approximate position for minimum bending 
moment), 

Mp = 265 - 56 - 2I4. = 185 pound-feet 

Mf = 50.7 - 15.1 - k'k  = 31-2 pound-feet 

Therefore, the Cierva method (see equation (Bl)) 
gives for the bending moment M at the azimuth position 
\|/ = 120°, 

M = l35 * ?l-2 = 26.7 pound-feet 
105 + 31 

Similarly, the Cierva method gives for \!f = 300° 

M = 59.h pound-feet 

When Hohenemser's method ie used, at \J/ = 120°, 

M = I85 x   = 2I4..7 pound-feet 
1 + (0.052 x 12J+.8) 

and similarly, at \|/ = 300°, 

M = 3^+5 x    = 14.6.0 pound-feet 
1 + (0.052 x 12lj..8) 
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APPENDIX C 

-~ - , „ . SYMBOLS 

A dimensionless coefficient / El/QB^R2^^)2) 

a slope of lift curve 

a0 constant term in Fourier series that 
expresses ß 

a^ coefficient of cos i|r in expression for ß 

b^ coefficient of sin i|/ in expression for ß 

B tip-loss factor (blade elements outboard of 
radius BR are assumed to have no lift) 

Cip, C2p» C3p coefficients in equations for y^, yg» and y* 

c blade chord (constant) 

El flexural stiffness of blade 

g acceleration due to gravity 

I mass moment of inertia of one rotor blade 
about horizontal hinge 

K dimensionless coefficient  (IIIBWK^/SEI) 

dL aerodynamic lift on blade element at radius r 

M bending moment in blade at radius r 

M]_, 1*2» Mx  moments corresponding to the deflection 
functions y^, yg, and y, 

M~ flexible-blade bending moment as defined in 
appendix B 

M_ bending moment in blade at radius r (blade 
assumed to be a rigid body) 

Mw weight moment of blade about horizontal 
w hinge 
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m mass of blade per unit length between 
hinge and radius BR 

n an arbitrary integer 

p any integer greater than zero end less than 
or equal to n 

P tension In blade at radius r 

P0 tension In blade at horizontal hinge 

Q mass of blade tip between radius BR and 
radius R 

R blade radius 

RQ distonce fron center of rotation to center 
^ of gravity of mass Q 

r radius of blade element 

S shear in the blade st radius r 

t time 

Urp velocity component at blade element perpen- 
dicular to blade span axis and parallel 
to rotor disk 

Up velocity component at blade element perpen- 
dicular both to blade span and to U«r 

x ratio of blade-element radius to BR 

y deflection of blade element at radius r, 
referred to rigid-blade position 

yj, J23  jx       deflection functions entering into the 
general equation for y 

ß blade flapping angle 

ß» angle between plane perpendicular to axis of 
rotation and line connecting horizontal 
hinge with blade element at radius r 
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tf slope of tangent to blade at radius r, 
referred to plane perpendicular to axis 
of rotation 

\|/ blade azimuth angle, measured in direction 
of rotation from down-wind position 

8 blade pitch angle 

ß angular velocity of rotor 

\i ratio of component of forward speed in plane 
perpendicular to axis of rotation to OR 

\ ratio of axial inflow velocity through rotor 
to OR 

Y mass constant of rotor blade ( cPaR 

p air density 
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Figure   I,-Comparison of   bending-moment analyses. 
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Figure   3.- Stresses   due to   combined   centrifugal 
tension  and bending in  plane   of   flopping . 
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Figure 4. - Geometry   of deflected   blade 
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Figure 5.- Forces    acting  on   a   blade   element    in  plane  of flapping. 
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